Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Biosensors (Basel) ; 13(5)2023 May 15.
Article in English | MEDLINE | ID: covidwho-20235396

ABSTRACT

Since the global outbreak of coronavirus disease 2019 (COVID-19), it has spread rapidly around the world. The nucleocapsid (N) protein is one of the most abundant SARS-CoV-2 proteins. Therefore, a sensitive and effective detection method for SARS-CoV-2 N protein is the focus of research. Here, we developed a surface plasmon resonance (SPR) biosensor based on the dual signal-amplification strategy of Au@Ag@Au nanoparticles (NPs) and graphene oxide (GO). Additionally, a sandwich immunoassay was utilized to sensitively and efficiently detect SARS-CoV-2 N protein. On the one hand, Au@Ag@Au NPs have a high refractive index and the capability to electromagnetically couple with the plasma waves propagating on the surface of gold film, which are harnessed for amplifying the SPR response signal. On the other hand, GO, which has the large specific surface area and the abundant oxygen-containing functional groups, could provide unique light absorption bands that can enhance plasmonic coupling to further amplify the SPR response signal. The proposed biosensor could efficiently detect SARS-CoV-2 N protein for 15 min and the detection limit for SARS-CoV-2 N protein was 0.083 ng/mL, with a linear range of 0.1 ng/mL~1000 ng/mL. This novel method can meet the analytical requirements of artificial saliva simulated samples, and the developed biosensor had a good anti-interference capability.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Surface Plasmon Resonance/methods , Biosensing Techniques/methods , SARS-CoV-2 , Gold , Immunoassay/methods , COVID-19/diagnosis
2.
Materials Chemistry Frontiers ; 2023.
Article in English | Web of Science | ID: covidwho-2326266

ABSTRACT

Separation membranes play a crucial role in the functioning of artificial organs, such as hemodialysis machines, membrane oxygenators, and artificial liver models. The current COVID-19 pandemic has highlighted the importance of these technologies in the medical community. However, membrane technology in artificial organs faces significant challenges, such as the clearance of low-middle-molecule and protein-bound toxins and limited blood compatibility. In this review, we will discuss the separation mechanisms, separation performance, and biocompatibility of different types of separation membranes used in artificial organs. We will also highlight the opportunities and challenges for next-generation membrane technology in this field, including the need for improved clearance of toxins and increased blood compatibility, as well as the potential for microfluidic devices.

3.
Talanta ; 262: 124701, 2023 Sep 01.
Article in English | MEDLINE | ID: covidwho-2324697

ABSTRACT

Fast and effective diagnosis is the first step in monitoring the current coronavirus 2 (CoV-2) pandemic. Herein, we establish a simple and sensitive electrochemical assay using magnetic nanocomposite and DNA sandwich probes to rapidly quantify the CoV-2 nucleocapsid (N) gene down to the 0.37 fM level. This assay uses a pair of specific DNA probes. The capture probe is covalently conjugated to Au-decorated magnetic reduced graphene oxide (AMrGO) nanocomposite for efficiently capturing target RNA. In contrast, the detection probe is linked to peroxidase for signal amplification. The probes target the COV-2 gene, allowing for specific magnetic separation, enzymatic signal amplification, and subsequent generation of voltammetric current with a total assay time of 45 min. The developed biosensor has high selectivity and can discriminate non-specific gene sequences. Synthetic COV-2 N-gene can be detected efficiently in serum and saliva, while 1-bp mismatch gene yielded a low response. The performance of the genosensor was good in an extensive linear range of 5 aM-50 pM. For synthetic N-gene, we achieved the detection limit of 0.37, 0.33, and 0.19 fM in human saliva, urine, and serum. This simple, selective, and sensitive genosensor could have various genetics-based biosensing and diagnostic applications.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Nanocomposites , Humans , SARS-CoV-2/genetics , Graphite/chemistry , Nanocomposites/chemistry , Nucleocapsid , Electrochemical Techniques , Gold/chemistry
4.
Nanomaterials (Basel) ; 13(9)2023 Apr 22.
Article in English | MEDLINE | ID: covidwho-2314606

ABSTRACT

This study describes the use of copper nanoparticles (CuNPs) and reduced graphene oxide (rGO) as an electrode modifier for the determination of chloroquine phosphate (CQP). The synthetized rGO-CuNPs composite was morphologically characterized using scanning electron microscopy and electrochemically characterized using cyclic voltammetry. The parameters were optimized and the developed electrochemical sensor was applied in the determination of CQP using square-wave voltammetry (SWV). The analytical range for the determination of CQP was 0.5 to 110 µmol L-1 (one of the highest linear ranges for CQP considering electrochemical sensors), with limits of detection and quantification of 0.23 and 0.78 µmol L-1, respectively. Finally, the glassy carbon (GC) electrode modified with rGO-CuNPs was used for quantification of CQP in tap water; a study was carried out with interferents using SWV and obtained great results. The use of rGO-CuNP material as an electrode modifier was thus shown to be a good alternative for the development of low-cost devices for CQP analysis.

5.
Anal Chim Acta ; 1265: 341326, 2023 Jul 18.
Article in English | MEDLINE | ID: covidwho-2311677

ABSTRACT

Herein, we have proposed a straightforward and label-free electrochemical immunosensing strategy supported on a glassy carbon electrode (GCE) modified with a biocompatible and conducting biopolymer functionalized molybdenum disulfide-reduced graphene oxide (CS-MoS2/rGO) nanohybrid to investigate the SARS-CoV-2 virus. CS-MoS2/rGO nanohybrid-based immunosensor employs recombinant SARS-CoV-2 Spike RBD protein (rSP) that specifically identifies antibodies against the SARS-CoV-2 virus via differential pulse voltammetry (DPV). The antigen-antibody interaction diminishes the current responses of the immunosensor. The obtained results indicate that the fabricated immunosensor is extraordinarily capable of highly sensitive and specific detection of the corresponding SARS-CoV-2 antibodies with a LOD of 2.38 zg mL-1 in phosphate buffer saline (PBS) samples over a broad linear range between 10 zg mL-1-100 ng mL-1. In addition, the proposed immunosensor can detect attomolar concentrations in spiked human serum samples. The performance of this immunosensor is assessed using actual serum samples from COVID-19-infected patients. The proposed immunosensor can accurately and substantially differentiate between (+) positive and (-) negative samples. As a result, the nanohybrid can provide insight into the conception of Point-of-Care Testing (POCT) platforms for cutting-edge infectious disease diagnostic methods.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Metal Nanoparticles , Humans , Molybdenum , Biosensing Techniques/methods , COVID-19/diagnosis , Immunoassay/methods , SARS-CoV-2 , Electrochemical Techniques/methods
6.
Advanced Functional Materials ; : 1, 2023.
Article in English | Academic Search Complete | ID: covidwho-2290645

ABSTRACT

The emergence of infectious diseases that are quickly spreading, like the coronavirus (COVID‐19), necessitates the development of efficient biosensors that can quickly detect and identify pathogens. It is essential to create sensitive virus detection methods in order to stop a virus from spreading throughout the world. It is determined that field‐effect transistors (FETs) made of nanomaterials are potential candidates for rapid virus identification due to how easily the electronic transport characteristics of such an atomically thin nanomaterial can be affected by perturbations. Various FETs in this review article are investigated that are based on nanoparticles, carbon nanotubes (CNT), graphene, graphene‐oxide, and semiconducting transition metal dichalcogenides (TMDs) WSe2 in order to show that they are promising biosensors in regards to quickly and precisely detect COVID‐19. The conjugation of nanomaterials with proteins enables the direct delivery of antiviral agents to the host cells. This method also minimizes the off‐target effects and enables the targeted interactions. This mechanism has produced encouraging results in regards to sensing or treating COVID‐19. The high surface area and extremely small size of nanomaterials make them crucial in regards to the development of new detection methods. The point‐of‐care test method of detection is quick, simple, and user‐friendly, and it only requires a small amount of a patient's blood. It does not require a laboratory or trained professionals. This overview of the current research that is conducted on nanomaterials will prove to be useful in the process of formulating strategies for the diagnosis, treatment, and vaccination of viruses in opinion. Finally, the conclusion of this review provides a summary of the current challenges and the future prospects. [ FROM AUTHOR] Copyright of Advanced Functional Materials is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

7.
Biomater Adv ; 150: 213440, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2303511

ABSTRACT

In recent years, graphene and its derivatives, owing to their phenomenal surface, and mechanical, electrical, and chemical properties, have emerged as advantageous materials, especially in terms of their potential for antimicrobial applications. Particularly important among graphene's derivatives is graphene oxide (GO) due to the ease with which its surface can be modified, as well as the oxidative and membrane stress that it exerts on microbes. This review encapsulates all aspects regarding the functionalization of graphene-based materials (GBMs) into composites that are highly potent against bacterial, viral, and fungal activities. Governing factors, such as lateral size (LS), number of graphene layers, solvent and GBMs' concentration, microbial shape and size, aggregation ability of GBMs, and especially the mechanisms of interaction between composites and microbes are discussed in detail. The current and potential applications of these antimicrobial materials, especially in dentistry, osseointegration, and food packaging, have been described. This knowledge can further drive research that aims to look for the most suitable components for antimicrobial composites. The need for antimicrobial materials has seldom been more felt than during the COVID-19 pandemic, which has also been highlighted here. Possible future research areas include the exploration of GBMs' ability against algae.


Subject(s)
Anti-Infective Agents , COVID-19 , Graphite , Humans , Graphite/pharmacology , Graphite/chemistry , Pandemics , Anti-Infective Agents/pharmacology
8.
J Nanobiotechnology ; 21(1): 51, 2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2254644

ABSTRACT

BACKGROUND: Renal excretion is one of the major routes of nanomaterial elimination from the body. Many previous studies have found that graphene oxide nanosheets are excreted in bulk through the kidneys. However, how the lateral size affects GO disposition in the kidneys including glomerular filtration, active tubular secretion and tubular reabsorption is still unknown. RESULTS: The thin, two-dimensional graphene oxide nanosheets (GOs) was observed to excrete in urine through the kidneys, but the lateral dimension of GOs affects their renal clearance pathway and renal injury. The s-GOs could be renal excreted via the glomerular filtration, while the l-GOs were predominately excreted via proximal tubular secretion at a much faster renal clearance rate than the s-GOs. For the tubular secretion of l-GOs, the mRNA level of basolateral organic anion transporters Oat1 and Oat2 in the kidney presented dose dependent increase, while no obvious alterations of the efflux transporters such as Mdr1 and Mrp4 mRNA expression levels were observed, suggesting the accumulation of l-GOs. During the GO renal elimination, mostly the high dose of 15 mg/kg s-GO and l-GO treatment showed obvious kidney injuries but at different renal compartment, i.e., the s-GOs induced obvious glomerular changes in podocytes, while the l-GOs induced more obvious tubular injuries including necrosis of renal tubular epithelial cells, loss of brush border, cast formation and tubular dilatation. The specifically tubular injury biomarkers KIM1 and NGAL were shown slight increase with mRNA levels in l-GO administrated mice. CONCLUSIONS: This study shows that the lateral size of GOs affected their interactions with different renal compartments, renal excretion pathways and potential kidney injuries.


Subject(s)
Kidney Diseases , Kidney , Mice , Animals , Kidney/metabolism , Kidney Diseases/metabolism
9.
Talanta ; 259: 124490, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2249477

ABSTRACT

Coronavirus disease 2019 is one of the global health problems. Herein, a highly sensitive electrochemical biosensor has been designed to detect the RNA-dependent RNA polymerase (RdRP) of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) (SARS-CoV-2 RdRP). Herein, the surface-initiated reversible-addition-fragmentation-chain-transfer polymerization was used to amplify the electrochemical signal. To do that, the thiol-terminated peptide nucleic acid (PNA) probes were first immobilized on the surface of a screen-printed electrode modified with reduced graphene oxide-gold nanocomposite and then the fixed concentration of the SARS-CoV-2 RdRP was added to the electrode surface to interact with PNA probes. Subsequently, the Zr 4+ ions were added to interact with the phosphate groups of the SARS-CoV-2 RdRP. It allowed us to polymerase the ferrocenylmethyl methacrylate (FcMMA) and 4-cyano-4-(phenylcarbonothioylthio)-pentanoic acid on the SARS-CoV-2 RdRP chain. Since the poly-FcMMA has an electrochemical signal, the response of the PNA-based sensor to SARS-CoV-2 RdRP was increased in the range of 5-500 aM. The limit of detection was calculated to be 0.8 aM which is lower than the previous sensor for SARS-CoV-2 RdRP detection. The proposed PNA-based sensor showed high selectivity to the SARS-CoV-2 RdRP in the presence of the gene fragments of influenza A and Middle East respiratory syndrome coronavirus.


Subject(s)
Biosensing Techniques , COVID-19 , Peptide Nucleic Acids , Humans , SARS-CoV-2 , Polymerization , RNA-Dependent RNA Polymerase , Biosensing Techniques/methods , Electrochemical Techniques/methods
10.
ACS Appl Mater Interfaces ; 15(12): 15195-15202, 2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2264408

ABSTRACT

Rapid diagnosis of coronavirus disease 2019 (COVID-19) is key for the long-term control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) amid renewed threats of mutated SARS-CoV-2 around the world. Here, we report on an electrical label-free detection of SARS-CoV-2 in nasopharyngeal swab samples directly collected from outpatients or in saliva-relevant conditions by using a remote floating-gate field-effect transistor (RFGFET) with a 2-dimensional reduced graphene oxide (rGO) sensing membrane. RFGFET sensors demonstrate rapid detection (<5 min), a 90.6% accuracy from 8 nasal swab samples measured by 4 different devices for each sample, and a coefficient of variation (CV) < 6%. Also, RFGFET sensors display a limit of detection (LOD) of pseudo-SARS-CoV-2 that is 10 000-fold lower than enzyme-linked immunosorbent assays, with a comparable LOD to that of reverse transcription-polymerase chain reaction (RT-PCR) for patient samples. To achieve this, comprehensive systematic studies were performed regarding interactions between SARS-CoV-2 and spike proteins, neutralizing antibodies, and angiotensin-converting enzyme 2, as either a biomarker (detection target) or a sensing probe (receptor) functionalized on the rGO sensing membrane. Taken together, this work may have an immense effect on positioning FET bioelectronics for rapid SARS-CoV-2 diagnostics.


Subject(s)
COVID-19 , Graphite , Humans , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Saliva
11.
OpenNano ; 9, 2023.
Article in English | Scopus | ID: covidwho-2239672

ABSTRACT

The global anxiety and economic crisis causes the deadly pandemic coronavirus disease of 2019 (COVID 19) affect millions of people right now. Subsequently, this life threatened viral disease is caused due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, morbidity and mortality of infected patients are due to cytokines storm syndrome associated with lung injury and multiorgan failure caused by COVID 19. Thereafter, several methodological advances have been approved by WHO and US-FDA for the detection, diagnosis and control of this wide spreadable communicable disease but still facing multi-challenges to control. Herein, we majorly emphasize the current trends and future perspectives of nano-medicinal based approaches for the delivery of anti-COVID 19 therapeutic moieties. Interestingly, Nanoparticles (NPs) loaded with drug molecules or vaccines resemble morphological features of SARS-CoV-2 in their size (60–140 nm) and shape (circular or spherical) that particularly mimics the virus facilitating strong interaction between them. Indeed, the delivery of anti-COVID 19 cargos via a nanoparticle such as Lipidic nanoparticles, Polymeric nanoparticles, Metallic nanoparticles, and Multi-functionalized nanoparticles to overcome the drawbacks of conventional approaches, specifying the site-specific targeting with reduced drug loading and toxicities, exhibit their immense potential. Additionally, nano-technological based drug delivery with their peculiar characteristics of having low immunogenicity, tunable drug release, multidrug delivery, higher selectivity and specificity, higher efficacy and tolerability switch on the novel pathway for the prevention and treatment of COVID 19. © 2022 The Author(s)

12.
Microorganisms ; 11(2)2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2216625

ABSTRACT

Graphene and its derivatives have lately been the subject of increased attention for different environmental applications of membrane technology such as water treatment and air filtration, exploiting their antimicrobial and antiviral activity. They are interesting candidates as membrane materials for their outstanding mechanical and chemical stability and for their thin two-dimensional (2D) nanostructure with potential pore engineering for advanced separation. All these applications have evolved and diversified from discovery to today, and now graphene and graphene derivatives also offer fascinating opportunities for the fight against infective diseases such as COVID-19 thanks to their antimicrobial and antiviral properties. This paper presents an overview of graphene-based 2D materials, their preparation and use as membrane material for applications in water treatment and in respiratory protection devices.

13.
Diamond and Related Materials ; 131, 2023.
Article in English | Scopus | ID: covidwho-2178030

ABSTRACT

This research describes a simple, sensitive, and disposable modified glassy carbon electrode constructed using platinum nanoparticles anchored on reduced graphene oxide nanocomposite as a conductive modifier (Pt@rGO/GCE) to detect an anti-coronavirus drug, Favipiravir (FAV). The as-synthesized nanocomposite was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). Under optimized conditions, the square wave voltammetry (SWV) method was used to determine trace amounts of FAV in real samples. The proposed electrode demonstrated a wide linear concentration range of 3.16 to 100.0 μM with a low detection limit (LOD) of 2.46 μM. Moreover, the developed electrode showed outstanding selectivity in the presence of several interferences with high repeatability and reproducibility. Finally, the developed electrode was applied to detect FAV in human plasma and pharmaceutical samples. © 2022 Elsevier B.V.

14.
Nanotechnol Sci Appl ; 16: 1-18, 2023.
Article in English | MEDLINE | ID: covidwho-2197688

ABSTRACT

Aim: The experiments aimed to document the presence of the ACE2 receptor on human muscle cells and the effects of the interaction of these cells with the spike protein of the SARS-CoV-2 virus in terms of induction of pro-inflammatory proteins, as well as to assess the possibility of reducing the pool of these proteins with the use of graphene oxide (GO) flakes. Methods: Human Skeletal Myoblast (HSkM), purchased from Gibco were maintained in standard condition according to the manufacturer's instruction. The cells were divided into 4 groups; 1. C-control, 2. S-with addition of spike protein, 3. GO-with the addition of graphene oxide, 4. GO-S-with addition of GO followed by the addition of S protein. Protein S (PX-COV-P049) was purchased from ProteoGenix (France). GO was obtained from Advanced Graphene Products (Zielona Gora, Poland). The influence of all the factors on the morphology of cells was investigated using light and confocal microscopy. ACE2 protein expression on muscle cells was visualized and 40 pro-inflammatory cytokines were investigated using the membrane antibody array method. The protein profile of the lysate of cells from individual groups was also analyzed by mass spectrometry. Conclusion: The experiments confirmed the presence of the ACE2 receptor in human skeletal muscle cells. It has also been documented that the SARS-CoV-2 virus spike protein influences the activation of selected pro-inflammatory proteins that promote cytokine storm and oxidative stress in muscle cells. The use of low levels of graphene oxide does not adversely affect muscle cells, reducing the levels of most proteins, including pro-inflammatory proteins. It can be assumed that GO may support anti-inflammatory therapy in muscles by scavenging proteins that activate cytokine storm.

15.
Nanomaterials (Basel) ; 13(2)2023 Jan 14.
Article in English | MEDLINE | ID: covidwho-2200555

ABSTRACT

Previous studies have suggested that graphene oxide (GO) has some antiviral capacity against some enveloped viruses, including SARS-CoV-2. Given this background, we wanted to test the in vitro antiviral ability to GO using the viral plaque assay technique. Two-dimensional graphene oxide (GO) nanoparticles were synthesized using the modified Hummers method, varying the oxidation conditions to achieve nanoparticles between 390 and 718 nm. The antiviral activity of GO was evaluated by experimental infection and plaque formation units assay of the SARS-CoV-2 virus in VERO cells using a titrated viral clinical isolate. It was found that GO at concentrations of 400 µg/mL, 100 µg/mL, 40 µg/mL, and 4 µg/mL was not toxic to cell culture and also did not inhibit the infection of VERO cells by SARS-CoV-2. However, it was evident that GO generated a novel virus entrapment phenomenon directly proportional to its concentration in the suspension. Similarly, this effect of GO was maintained in assays performed with the Zika virus. A new application for GO nanoparticles is proposed as part of a system to trap viruses in surgical mask filters, air conditioning equipment filters, and air purifier filters, complemented with the use of viricidal agents that can destroy the trapped viruses, an application of broad interest for human beings.

16.
Front Med (Lausanne) ; 9: 1032899, 2022.
Article in English | MEDLINE | ID: covidwho-2163041

ABSTRACT

As the world has experienced in the Coronavirus Disease 2019 pandemic, viral infections have devastating effects on public health. Personal protective equipment with high antiviral features has become popular among healthcare staff, researchers, immunocompromised people and more to minimize this effect. Graphene and its derivatives have been included in many antimicrobial studies due to their exceptional physicochemical properties. However, scientific studies on antiviral graphene are much more limited than antibacterial and antifungal studies. The aim of this study was to produce nanocomposite fibers with high antiviral properties that can be used for personal protective equipment and biomedical devices. In this work, 10 wt% polycaprolactone-based fibers were prepared with different concentrations (0.1, 0.5, 1, 2, 4 w/w%) of porous graphene, graphene oxide and graphene foam in acetone by using electrospinning. SEM, FTIR and XRD characterizations were applied to understand the structure of fibers and the presence of materials. According to SEM results, the mean diameters of the porous graphene, graphene oxide and graphene foam nanofibers formed were around 390, 470, and 520 nm, respectively. FTIR and XRD characterization results for 2 w/w% concentration nanofibers demonstrated the presence of graphene oxide, porous graphene and graphene foam nanomaterials in the fiber. The antiviral properties of the formed fibers were tested against Pseudomonas phage Phi6. According to the results, concentration-dependent antiviral activity was observed, and the strongest viral inhibition graphene oxide-loaded nanofibers were 33.08 ± 1.21% at the end of 24 h.

17.
Anal Chim Acta ; 1242: 340716, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2149181

ABSTRACT

In this research, by using aptamer-conjugated gold nanoparticles (aptamer-AuNPs) and a modified glassy carbon electrode (GCE) with reduced graphene oxide (rGO) and Acropora-like gold (ALG) nanostructure, a sandwich-like system provided for sensitive detection of heat shock protein 70 kDa (HSP70), which applied as a functional biomarker in diagnosis/prognosis of COVID-19. Initially, the surface of the GCE was improved with rGO and ALG nanostructures, respectively. Then, an aptamer sequence as the first part of the bioreceptor was covalently bound on the surface of the GCE/rGO/ALG nanostructures. After adding the analyte, the second part of the bioreceptor (aptamer-AuNPs) was immobilized on the electrode surface to improve the diagnostic performance. The designed aptasensor detected HSP70 in a wide linear range, from 5 pg mL-1 to 75 ng mL-1, with a limit of detection (LOD) of ∼2 pg mL-1. The aptasensor was stable for 3 weeks and applicable in detecting 40 real plasma samples of COVID-19 patients. The diagnostic sensitivity and specificity were 90% and 85%, respectively, compared with the reverse transcription-polymerase chain reaction (RT-PCR) method.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Graphite , Metal Nanoparticles , Humans , Gold/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , COVID-19/diagnosis , Graphite/chemistry , Carbon/chemistry , Limit of Detection , Prognosis , Electrochemical Techniques/methods , Biosensing Techniques/methods , Electrodes , COVID-19 Testing
18.
Anal Chim Acta ; 1234: 340533, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2129675

ABSTRACT

The emerging pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) critically challenges early and accurate virus diagnoses. However, the current gold standard for SARS-CoV-2 detection, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), has reportedly failed to detect low-viral loads. One compound, graphene oxide (GO), which adsorbs single-stranded DNA (ssDNA), has been widely applied in molecular pathogen detection. This study presents a highly sensitive GO-multiplex qPCR method for simultaneous detection of two SARS-CoV-2 genes (RdRP and E) and one reference gene (RNase P). In a GO-multiplex qPCR system, GO pre-absorbs each forward primer to form specific GO-forward primer composites before entering the amplification system. Target gene amplification is confined within the primer-enriched composites, thus, improving the sensitivity of the assay. Compared to conventional multiplex qPCR, GO-multiplex qPCR reduces the limit of detection by 10-fold to 10 copies/reaction. Hence, the GO-multiplex qPCR assay can be effectively used for SARS-CoV-2 detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19 Testing , Clinical Laboratory Techniques/methods , COVID-19/diagnosis , RNA, Viral/genetics , RNA, Viral/analysis , Sensitivity and Specificity
19.
Sens Actuators A Phys ; 349: 114058, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2122809

ABSTRACT

Stimulated by the COVID-19 outbreak, the global healthcare industry better acknowledges the necessity of innovating novel methods for remote healthcare monitoring and treating patients outside clinics. Here we report the development of two different types of graphene textile electrodes differentiated by the employed fabrication techniques (i.e., dip-coating and spray printing) and successful demonstration of ergonomic and truly wearable, single-arm diagnostic electrocardiography (SADE) using only 3 electrodes positioned on only 1 arm. The performance of the printed graphene e-textile wearable systems were benchmarked against the "gold standard" silver/silver chloride (Ag/AgCl) "wet" electrodes; achieving excellent correlation up to ∼ 96% and ∼ 98% in ECG recordings (15 s duration) acquired with graphene textiles fabricated by dip-coating and spray printing techniques, respectively. In addition, we successfully implemented automatic detection of heartrate of 8 volunteers (mean value: 74.4 bpm) during 5 min of static and dynamic daily activities and benchmarked their recordings with a standard fingertip photoplethysmography (PPG) device. Heart rate variability (HRV) was calculated, and the root means successive square difference (rMMSD) metric was 30 ms during 5 min of recording. Other cardiac parameters such as R-R interval, QRS complex duration, S-T segment duration, and T-wave duration were also detected and compared to typical chest ECG values.

20.
J Med Virol ; 94(12): 5808-5826, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2075068

ABSTRACT

Rapid detection of antibodies during infection and after vaccination is critical for the control of infectious outbreaks, understanding immune response, and evaluating vaccine efficacy. In this manuscript, we evaluate a simple ultrarapid test for SARS-CoV-2 antibodies in COVID-19 patients, which gives quantitative results (i.e., antibody concentration) in 10-12 s using a previously reported nanomaterial-based three-dimensional (3D)-printed biosensing platform. This platform consists of a micropillar array electrode fabricated via 3D printing of aerosolized gold nanoparticles and coated with nanoflakes of graphene and specific SARS-CoV-2 antigens, including spike S1, S1 receptor-binding domain (RBD) and nucleocapsid (N). The sensor works on the principle of electrochemical transduction, where the change of sensor impedance is realized by the interactions between the viral proteins attached to the sensor electrode surface and the antibodies. The three sensors were used to test samples from 17 COVID-19 patients and 3 patients without COVID-19. Unlike other serological tests, the 3D sensors quantitatively detected antibodies at a concentration as low as picomole within 10-12 s in human plasma samples. We found that the studied COVID-19 patients had higher concentrations of antibodies to spike proteins (RBD and S1) than to the N protein. These results demonstrate the enormous potential of the rapid antibody test platform for understanding patients' immunity, disease epidemiology and vaccine efficacy, and facilitating the control and prevention of infectious epidemics.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Metal Nanoparticles , Antibodies, Viral , COVID-19/diagnosis , Gold , Humans , Printing, Three-Dimensional , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL